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1. SUMMARY 

In the present work, the solution of the Saint Venant problem is attained in a different way from 

the classic method, since the proposed approach relies from the beginning on the average 

displacements and rotations of the cylinder cross-section. Basically, it is emphasised the role of 

such entities, which are commonly involved only in the classic Beam Theory. 

The solution of the problem is developed in a general way, considering the indefinite equilibrium 

equations, the compatibility equations and the constitutive model typical of the elastic continuum 

mechanics; than the simplification of the stress tensor is applied, and the boundary conditions are 

imposed. As a consequence of the basic hypothesis, the expression of the local displacements field 

involves the average displacements and rotations of the cross-section; in addition, it contains the 

characteristic deformations of the solid infinitesimal transversal portion. 

Moving from such expressions, the relations between deformations and internal forces are 

derived; these relations, together with the beam equilibrium equations, enable us to determine all 

the parameters which characterise the continuum deformation status. 

Operating in the abovementioned way, the problem which must be faced at first is to individuate 

the most suitable system of kinematic quantities, to represent the motion of the cross-section. In 

effect, while the section torsional rotation is univocally definable, due to the rigid-body constraint 

affecting the cylinder, the same condition is not occurring for the two flexural rotations, whenever a 

section warping is present. In this situation, the definition of the characteristic displacements and 

rotations is not univocal; in addition, the solution of the problem in terms of displacements assumes 

different expressions depending on the choice made with regards to such definitions. 

In the present study, we refer to two different expressions of the generalised section 

displacements, the first one is obtained through geometrical assessments, the second one is related 

to energetic principles. It is therefore pointed out how the expressions of the cylinder motion 

depend on the abovementioned settings, and especially how, in the two cases, the shear deformation 

factors and the position of the torsional centre of the section prove to be different. 
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2. DISPALCEMENTS EXPRESSION 

 

2.1. Average displacements and strains over the section 
 

Consider a continuum with cylindrical shape, featured by a main longitudinal axis z and a cross 

section A with boundary , constituted by a linear elastic, homogeneous, isotropic material, 

subjected to the load and restraint conditions defined by the Saint Venant problem. Superimposing 

the transversal coordinate axes x and y with the principal axes of inertia of section A (fig. 1), the 

local displacement field in the section may be put in the following form: 
 

x, u

y, v

z, w

G
A

 
Fig. 1. The Saint Venant cylinder. 
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 (2.1) 

 

The terms um, vm, wm denote the average displacements of the section along x, y, and z directions, 

defined as 
 

1 1 1, ,m m mA A A
u u dA v v dA w wdA

A A A
     , 

 

while the quantities 
mj

i

x
u

  represent the averages over the section of the displacements partial 

derivatives with respect to x and y directions, defined as 
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On the basis of these assumptions, functions u*, v*, and w* describe a displacement field featuring 

null average values and null average partial derivatives in the section. 

It is convenient to introduce this kind of quantities in the expression of the displacement field, 

since they easily relate to the mean rotations and strains over the section, intended as the integral 

means of rotations and strains affecting the differential elements. In effect, from the decomposition 

of the displacement gradient tensor, it emerges that 
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and at the same time 
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from which, referring to the average values, we obtain 
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Considering again equations (2.1), the quantities 
mx

w



 , 
my

w

 represent the average rotation 

over area A of the differential surface elements with normal vector in z direction, respectively 

around y and x axes; they can therefore be regarded as the average rotations of the section around 

such axes, and they will be denoted by the following terms 
 

1 ,

1 .

x A
m

y A
m

w w dA
y A y

w w dA
x A x





 
 
 

 
   

 




 (2.2) 
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Considering again the strain tensor, we find 
 

, ,zx zy
w u w v
x z y z

    
   
   

 

 

for which, in terms of average values, the following relations are obtained 
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 (2.3) 

 

Assumed to identify the mean displacements of the section with the displacements of the cylinder 

axis, relations (2.3) show the dependence between the average rotation of the section and the axis 

rotation, when the infinitesimal portion of the solid is affected by a non-zero mean angular strain. 

Substituting the derived expressions in (2.1), it results that the displacement field may be written 

in the following form 
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 (2.4) 

 

It involves, in an absolutely general way, the average displacements and rotations of the section, 

besides the null average displacement functions u*, v*, and w*. 

On the basis of the Saint Venant simplifying hypothesis with regards to the stress tensor, local 

strains must comply, in each point of the section, with the following relations: 
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in the same way, in terms of average values over the section, we find 
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having denoted the mean axial strain in z direction as zm. Substituting the obtained values in 

equations (2.4), the displacements expressions typical of the Saint Venant problem are derived 
 

,
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 (2.6) 

 

The differentiation of expressions (2.6) yields the strains affecting the infinitesimal volume element, 

which result 
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 (2.7) 

 

In these expressions, two new kinds of characteristic deformations of the section are pointed out: 

the flexural curvatures x and y, and the torsional curvature  , defined as 
 

, , .yx zm
x y

dd d
dz dz dz

        

 

Essentially, the displacement field and the strain distribution of the continuum are expressed in 

terms of six displacement parameters, three translations and three rotations, and six deformation 

parameters. Usually in literature, contrary to the present study, such quantities are not explicitly 

involved in the solution of the Saint Venant problem, but they are only considered subsequently, as 

part of the classic Beam Theory. 
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2.2. Derivation of displacements u*, v* and w*. 
 

Consider the local equilibrium equations, expressed in terms of strains, in the typical form they 

assume within the Saint Venant theory 
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 (2.8) 

 

From such relations, the independence of functions z and their mean values from variable z is 

derived, as well as the linearity of the z distribution over the section. This latter condition implies 

that the term *
z w z    , in the third of equations (2.7), is identically null, and therefore the 

displacement w* is exclusively function of variables x and y. 

The local strains expressions (2.7) yield the displacement functions u* and v*, by means of 

punctually imposing conditions (2.5). For these quantities the following expressions are obtained 
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 (2.9) 

 

provided that x and y axes are coincident with the section principal axes of inertia. 

In order to derive the expression of w*(x,y), consider the third one of equations (2.8), plus the 

boundary condition in terms of angular strains 
 

2(1 ) inzyzx z A
x y z

 
 
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, (2.10) 

0 suzx
z

zy



 

   
 

T
Tγ n n , (2.11) 

 

in which the outward normal versor to the section border has been denoted as n (fig. 2). In these 

conditions it results 
 

on 
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Fig. 2. Tangential and normal vector to the section border. 
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The first one is obtained integrating equation (2.10) over section A; on the other hand, multiplying 

both members of equation (2.10) by the term y, we find 
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from which, on the basis of boundary condition (2.11), equation (2.13) is derived. In the same way, 

the operation of multiplying by the term x yields equation (2.14). 

Substituting expressions (2.9) in equations (2.7), and taking into account conditions (2.13) and 

(2.14), the angular strains may be written in the following form 
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in which it has been put 
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At this point, the introduction of local strain expressions (2.15) in equations (2.10) and (2.11) 

yields the conditions that displacement function w*(x,y) is required to fulfil: 
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The displacement function w*(x,y) may be expressed as the sum of three contributions, each one 

referring to a single deformation among zxm, zym, and  : 
 

*( , ) ( , ) ( , ) ( , ) .zxm Tx zym Ty Mw x y x y x y x y        

 

In this case, the general solution of the problem is obtained solving three independent Dini-

Neumann boundary problems, defined by the following relations 
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Functions M, Ty, Tx, are univocally determined by the abovementioned boundary problems, 

and they exclusively depend on the shape of the section; besides, they are defined up to an additive 

constant, to be determined imposing that their mean value is null throughout the section. In the 

same way, implicitly to the definition of the displacements distribution w*(x,y), functions  feature 

null average partial derivatives over the section. Ultimately, they may be regarded as the 

contributions to the section warping, due to the two shear deformations and to the torsional 

deformation. 

on 

on 

on 

on 



10 

2.3. Displacements, strains and characteristic parameters of the section 
 

On the basis of the issues so far discussed, the generic section of the Saint Venant cylinder 

undergoes a motion that may be described by the following expressions 
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These ones comprise the average displacements and rotations of the section, the parameters 

featuring its deformation status, two given functions of variables x and y, whose expression is 

provided by (2.16), the warping functions , defined by the boundary problems (2.17), to be 

regarded as known once the shape of the section is established. 

On the other hand, the expressions of local strains result 
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 (2.19) 

 

which only feature the section deformations parameters, besides the functions f, g, and . 

The application of the following definitions of the internal forces 
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yields the existing relations between these quantities and the deformation parameters of the cross-

section; these relations, known as constitutive model, result 
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Within them, the term J0 indicates the section polar moment of inertia, while the quantities q and 

,t tx ty    
T

δ  respectively denote the torsional deformation factor and the position vector of the 

shear centre, whose expressions are 
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The evaluation of these quantities only regards the  functions, and therefore their values are 

exclusively dependent on the shape of the section. 

The characteristic internal forces, acting on the generic section of the cylinder, are derived 

imposing the equilibrium conditions; subsequently, the deformations featured by the continuum 

infinitesimal transversal portion are determined by equations (2.20). Finally, all displacement 

parameters included in the displacements field expressions (2.18) are obtained integrating the 

following kinematic compatibility equations 
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These equations define the deformation parameters in terms of derivatives of the generalised 

displacements. On their basis, we can affirm that the axis inclination of the solid in a single plane 

exclusively depends on the shear deformation in the plane itself, and in particular, the axis 

inclination is not affected by the torsional deformation of the cylinder. This means that, in the 

present model, the torsional centre coincides with the section centroid. 
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3. SECTION DISPLACEMENTS AND DEFORMATION WORK 

 

3.1. Generalised displacements of the section and external work 

Since the expressions of punctual displacements and strains are provided, it is possible to 

evaluate the deformation work produced within the cylinder; in addition, we set the goal to 

determine a system of six displacement parameters of the section such that, considered a cylinder 

elementary portion with differential length dz, the external work effected on this portion may be 

expressed as the differential of the following quantity 
 

( )e x x y y x y z zL z N w M M T u T v M              

 

The external work produced on the portion must hence result 
 

( ) yx z
e x y x y y x z

dd ddw du dvdL z N M M T T M dz
dz dz dz dz dz dz

 
 

                     
    

 (3.1) 

 

Furthermore, from the expressions of displacements and strains provided by (2.18), the same work 

may alternatively be evaluated as 
 

 ( ) z
e z zx zy z z zx zyA A

u vdL z d w u v dA w dAdz
z z z
                     . 

 

In this special case we have 
 

   

 
0

,

z
z z zm x x y yA

x y zxm x zym xy cy y x zxm yx zym y cx

m m
zx zy x y z x zxm x x zym yxA

y zxm xy y zym y z x ty y tx zx

w dA N M M
z

T T

du dvu v dA T T M T T
z z dz dz

qAT T M T T
J


    

         

    

    

 

 

       

            

             

       





 m cy zym cx   

 (3.2) 

 

in which it has been put 
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 

 

1 1, ,

1 1, ,

M M
cx M cxA A

x x

M M
cy M cyA A

y y

y dA g f f x g y dA
J AJ x y

x dA f g f y g x dA
J AJ x y

 
  

 
  





  
         

  
        

 

 
 

 

2 2

2 2

1 1, ,

1 1, ,

1 1, ,

1 1,

Tx Tx
x Tx xA A

y y y

Ty Ty
xy Ty xyA A

y y

Ty Ty
y Ty yA A

x x x

Tx
yx Tx yxA

x x

f gx dA f g dA
J AJ x y J

x dA f g dA
J AJ x y

f gy dA g f dA
J AJ x y J

y dA
J AJ x

 


 


 













   
      

   
  

       
  

         


    


 

 

 

 .Tx

A
g f dA

y
 

  


 (3.3) 

 

Summing all the corresponding members relating to the normal strains and to the angular stains, 

and taking into account relations (2.3), the overall expression of the work turns out to be 
 

 

0 0

0 0

0

1

1

e
zm x x y y

x zxm x x ty cy zym xy yx ty cx cy

y zxm yx xy tx cy zym y y tx cx cx

z zxm cy zy

dL z
N M M

dz
qA qAT
J J

qA qAT
J J

qAM
J

  

       

       

   

   

   



   

    
               

     
    

              
     

     .m cx  
 
 

 (3.4) 

 

Whereas, substituting in equations (3.2) the constitutive model (2.20), relating internal forces and 

deformations, the external work may be rewritten in the following form 
 

   
     

( ) 1

1 ,

e
zm x x y y x zxm x x zym xy yx cy

y zxm yx xy zym y y cx z x cy y cx

dL z N M M T
dz

T M T T

      

       

 

   

             

             

 

 

i.e., summing corresponding terms, 
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 

 

1

1 ,

e
zm x x y y x zxm x zym xy cy

y zxm yx zym y cx z

dL N M M T
dz

T M

      

    

             

         

 (3.5) 

 

having introduced in the above expression the following quantities 
 

, ,
, ,

, .

x x x xy xy yx

yx yx xy y y y

cx cx cx cy cy cy     

 

 

 

          
          
    

 (3.6) 

 

Comparing equations (3.1) and (3.5), the relations are drawn between the new displacement 

parameters u′, v′, w′, ′x, ′y, ′z, and the generalised mean displacements of the section um, vm, wm, 

x, y, zm, defined in chapter 2. In detail, it must result 
 

 

 

, , ,

1 ,

1 ,

y ym x x
zm x y

m
y zxm x zym xy cy y zxm x zym xy cy

m
x zxm yx zym y cx x zxm yx zym y cx

zmz

d ddw d ddw
dz dz dz dz dz dz

dudu
dz dz

dvdv
dz dz

dd
dz dz

  
  

         

         





      


                     


                   


  ,

 

 

and hence it is possible to assume, taking into account the cylinder equilibrium equations (2.13) and 

(2.14), 
 

   
   

, , , ,

2 1
,

2 1
.

m x x y y z zm

m z cy y x y x xy x

m z cx y yx y x y x

w w

u u J J
A

v v J J
A

     


   


   

      


        


        

 (3.7) 

 

These relations represent the kinematic compatibility equations of the cylinder in terms of the new 

cross-section displacements. Examining these equations, we can observe that the axis inclination in 

one plane is not only caused by the shear deformation in the plane itself, but also by the one 

experienced in the orthogonal plane, and by the torsional deformation. Specifically, this latter one 

generates displacements of the barycentric axis, resulting from a torsional motion of the cylinder 

around a rotation axis located at point C′, whose coordinates are ′cx, ′cy, and which turns out to be, 
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by definition, the torsional centre of the cross-section. In addition, we can observe that the terms X′ 

featured in equations (3.7) may be regarded as the shear deformability coefficients of the section, 

depending on the shape of the section itself; in particular, the entities 1 y  , 1 x   are usually 

denoted as shear deformability factors in y and x directions. Evidently, such factors assumed unit 

value within the mechanical representation described in chapter 2, based on the average 

displacements and rotations of the section. 
 

x

y

G C'

v'

'

z

y, v

x = x

v'
vm

zm

cx

 
Fig. 3. Axis inclination and torsional center. 

 

From equations (3.7) and from the kinematic compatibility relations highlighted in chapter 2, the 

torsional centre turns out to be the point around which the section must rotate, in the case of a 

cylinder exclusively subjected to torsional deformation, in order to find null flexural rotations of the 

sections around transversal axes. 

It must be remarked that equation (3.4) proves to be valid both in terms of actual work and 

virtual work, while equation (3.5) applies exactly only in terms of actual work. 
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3.2. Shear centre and torsional centre 

Consider two systems of internal forces and deformations, consistent with equations (2.20), 

referring to the internal forces of shear and torsional moment 
 

.1
.1 .1 1 .1

0

.2 2 .2
0

; ,

;

y tx
y yzm y

z z

T qT T
GA GJ

qM M
GJ


 



  


 (3.8) 

 

The application of the Betti reciprocity theorem, by means of equation (3.4), yields the following 

expressions for the mutual deformation work 
 

 1 2
.1 2 .2 1 .1

0
y cx z zym cx

dL z qAT M
dz J

      
    

 
; 

 

it therefore results, substituting the expressions given by equation (3.8), 
 

cx tx cx     . (3.9) 

 

In the same way, with respect to the internal forces Ty and Mz, it follows 
 

cy ty cy     . (3.10) 

 

Eventually, applying the theorem to both shear internal forces Ty and Tx, the identity ensues 

between the joint deformability factors 
 

xy yx    . (3.11) 

 

The same results may be obtained elaborating the expressions of the abovementioned quantities; 

for example, in order to prove equation (3.9), consider 
 

 

 

1 ,

1 1 ,

1 .

cx MA
x

Ty Ty
tx A A

x

M M
cx A

x

y dA
J

y x dA f x g y dA
A x y A J

g f f x g y dA
A J x y

 

 


 
 

 

  
       

  
       



 


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On the basis of such expressions, equation (3.9) becomes 
 

1 1 1 .M MTy Ty
MA A

x x

y dA y x g f dA
J A x y J x y

  


     
            

   (3.12) 

 

In order to prove the above equation, the integrand function at the second member is put in the form 
 

   

1

1

1 ,

M MTy Ty

x

M
Ty M

xx

M
Ty M M

x xx

y x g f
x y J x y

gy
f Jx J y

g gy
f J f Jx J y

  


 


  

    
         

  
             

         
                           

TT

T T T

 

 

therefore, the integral itself results 
 

1 1 ,Ty M MA A
x xx

g gy
dA dA

f J f JxA A J
  

        
                         

 T T T  (3.13) 

 

since the average value over the section of the functions M  partial derivatives equals zero. 

Applying the Gauss theorem, and taking into account equations (2.17), we obtain 
 

    .

Ty Ty Ty MA

Ty M Ty M Ty MA A

y y
dA ds ds

x x

dA dA

   

     

 

    
             

          

  

 

T T T

TT

n n
 (3.14) 

 

In the same way, it follows that 
 

   

1 1

.

M M M TyA
x xx x

M Ty M Ty M TyA A

g g
dA ds ds

f J f JJ J

dA dA

   

     

 

    
             

          

  

 

T T T

TT

n n
 (3.15) 

 

Introducing the results of equations (3.14) and (3.15) into expression (3.13), this latter transforms 

into 
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1 1 1 .Ty M M Ty MA A A
xx

g
dA dA dA

f JA A A J
    

 
        

   T  (3.16) 

 

Given that, on the basis of equations (2.16) and (2.17), the following relations are satisfied 
 

 
0, , ,

1 1M Ty
xx

gA Ay y
f JJ


 

 
 

         
T  

 

expression (3.16) then becomes 
 

   
1 1 .

1 1M M MA A A
x x x

y dA y dA y dA
J J J

  
 

   
     

 

Since expression (3.16) derives from the second member of equation (3.9), the equation itself is 

demonstrated. In a similar way, equations (3.10) and (3.11) can be proved. 

On the basis of relations (3.9) and (3.10), the coordinates of the torsional centre, defined by 

equations (3.6), may be written in the form 
 

2 , 2 .cx cx tx cy cy ty           

 

Generally, the quantities *
cx e *

cy may be regarded as negligible; therefore, from equations (3.9) 

and (3.10), we can argue that the torsional centre and the shear centre are neighbouring. 
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3.3. The internal deformation work 
 

At this point of the process, we set the goal to determine the expressions of the shear 

deformability factors defined by equations (3.6), on the basis of the internal deformation work, 

evaluated through the application of the Clapeyron theorem. On this purpose, and for the sake of 

simplicity, the cylinder is supposed to be subjected only to bending and shear deformations along 

the y-z plane; in other words, we assign 
 

0 , 0 , 0 , 0zm zxm y       . 

 

In such conditions, the local strains defined by equations (2.19) reduces to 
 

,

( , ) ,

( , )1 .

z x

Ty
zx zym

x

Ty
zy zym

x

y

g x y
x J

f x y
y J

 


 


 

 

 
   

 
    

 (3.17) 

 

Referring again to the cylinder elementary portion with length dz, the external work may be 

described, by means of equation (3.5), as it follows 
 

 1 ,e
x x y zym y

dL M T
dz

        (3.18) 

 

The internal work, on the other hand, is evaluable as 
 

 i z z zx zx zy zyA
dL dAdz        , (3.19) 

 

therefore, substituting the expressions of stresses and strains given by equation (3.17) into equation 

(3.19), the internal work may be written as 
 

2 2

2 2

2

2 .

y zym Ty Ty
i x x y zym A

Ty Ty

x x

T
dL M T

A x y

f gg f dA dz
J x y J

  
 

 

                    
   

         


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The application of the Clapeyron theorem, with regards to the cylinder differential portion, results 

in imposing that 
 

e
i

dL dz dL
dz

 , 

 

and therefore, the following relation is derived 
 

2 2 2 2

2
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which consists in the expression of the shear deformability factor in y direction, attained by means 

of the internal work. 

Actually, from equations (3.3) and (3.6), the following relations are also verified 
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therefore, comparing equations (3.20) and (3.21), it results that 
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Such relation may be proved rewriting the integrand function at the second member in the following 

form 
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Applying the Gauss theorem and taking into account equations (2.17), we obtain that 
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In addition, the second member of equation (3.22) assumes the following expression 
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since the partial derivatives of functions Ty  have zero mean values throughout the section. 

Actually, equations (2.16) and (2.17) yield as well 
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Substituting such expressions in equation (3.23), we obtain 
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and therefore relation (3.22) is demonstrated. Similar assessments apply with regards to the shear 

deformability factor in x direction, and to the joint deformability factors with regards to x and y 

axes. 
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4. CONCLUSIONS 
 

In the present study, the displacements field experienced by the Saint Venant cylinder has been 

determined referring from the beginning to the average displacements and rotations of the cross-

section. Among these latter ones, the flexural rotations around the two transversal axes have been 

defined as the integral average value of the corresponding local rotations. 

On the basis of such methodology, the expressions describing the cylinder motion contain the 

section deformation parameters, besides the generalised mean displacements. 

The kinematic relations between such deformation parameters and the derivatives of the mean 

displacements highlight that, in such a conceived model, the cylinder deformation status is 

characterised by unit shear factors and a torsional centre coinciding with the section centroid. 

Anyway, the typical solution methods for this specific problem usually involve a different set of 

characteristic displacements of the cross-section, attained through assessments of energetic kind. 

Basically, a displacements system is considered for which the work produced by the internal forces 

is equal to the one effected by the stresses over the whole section, due to the local displacements. 

Adopting this kinematic model, relations between shear deformations, flexural rotations and axis 

inclinations becomes less direct; in effect, they turn out to involve the shear deformability factors 

and the torsional centre, which is not coincident anymore with the section centroid, but rather close 

to the shear centre [1]. In addition, it may be noticed that, unless special symmetry conditions are 

given, shear deformations in a main plane result in inclination of the cylinder axis in the orthogonal 

plane. 

Anyway, arbitrariness only concerns the problem solution in terms of displacements; in effect, 

local strains and stresses distributions are univocally determined, since their expressions are not 

affected by the definition adopted for the generalised section displacements. 

Relating these two sets of displacements parameters, the expressions of the shear deformability 

factors and the coordinates of the torsional centre are derived. The former ones result formally 

different from the expressions obtained through the application of the Clapeyron theorem to the 

infinitesimal transversal portion of the solid; anyway, these expressions are totally equivalent if the 

theorem is rigorously applied, i.e., if the external work is evaluated not neglecting the contribution 

due to the displacements system having null average derivatives over the section. 
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